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Abstract: Background/Objectives: Asymmetric myopic peripheral defocus lenses (MPDLs)
have proven to be effective in slowing the progression of myopia in Spanish children over
a period of 12 months. The purpose of this study was to assess the MPDL spectacles’
efficacy in slowing myopia progression over a 24-month period in children. Methods: This
study extends the follow-up period of the double-masked, prospective, and randomized
clinical trial previously published to 24 months. Children from 6 to 12 years were assigned
to two groups: a control group wearing spherotorical single vision lenses (SVLs) or a
treatment group wearing MPDL lenses. Inclusion criteria included children with myopia
less than −0.50 D, astigmatism below 1.50 D, and best-corrected visual acuity of at least
20/20. Participants underwent cycloplegic autorefractive examination and axial length (AL)
measurements at the baseline and six and twelve months in the study already published,
and twenty-four months later in the present study. Lifestyle factors, including outdoor
activities and digital device use, were also assessed. Baseline characteristics, including
age, refractive error, and AL, were comparable between groups. Dropout rates were
15.9%, with 14 participants lost to follow-up, distributed equally between the two groups.
Results: After 24 months of follow-up, 69 children remained in this study, comprising
34 participants in the SVL cohort and 35 in the MPDL cohort. Over 24 months, the MPDL
group showed significantly less AL elongation than the SVL group (0.27 ± 0.23 mm and
0.37 ± 0.24 mm; p = 0.0341). The mean relative AL increase was 1.10 ± 0.95% in the MPDL
group, compared to 1.56 ± 1.02% in the SVL group (p = 0.0322). Younger children exhibited
faster AL growth, while digital device use and outdoor activities did not affect AL changes.
Conclusions: MPDL spectacle lenses substantially slowed myopia progression over a
24-month period, with 28.7% less progression in absolute AL growth and 29.8% in relative
AL growth compared to SVL. These results indicate that MPDL lenses are an effective
method for slowing myopia progression.

Keywords: myopia; axial length; spectacle lenses

1. Introduction
One of the most prevalent ocular disorders globally is myopia [1–3], and its incidence

rates are rapidly increasing across the globe [4,5]. The earlier onset of myopia is strongly
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associated with the progression to severe levels of myopia in adulthood [5,6]. Low and
moderate myopia can develop into high myopia of −6.00 D or greater if not addressed
in time [7]. This progression can result in severe long-term ocular health issues. Severe
myopia has been linked to an increased likelihood of experiencing complications such
as glaucoma, myopic macular degeneration, retinal detachment and, in extreme cases,
irreversible vision loss [8].

The global incidence of high myopia is expected to rise considerably, with an increase
estimated at 117 million people from 2020 to 2030 [3,9]. As a result, pathological myopia is
projected to become the main cause of blindness and irreversible vision impairment in the
world. The growing concern regarding the potential complications associated with high
myopia has intensified the call for effective myopia control measures. Early detection and
effective intervention to manage myopia and slow its progression, particularly in children,
have thus become critical.

The initiation and progression of myopia are governed by a combination of visual, en-
vironmental, and genetic factors that modulate eye growth in response to visual inputs [10].
Research involving animal models has been instrumental in deepening our knowledge of
myopia and advancing the development of effective treatment approaches [11]. Research
using these models has demonstrated that emmetropization is a visually guided process,
where myopic defocus decelerates eye growth and hyperopic defocus accelerates it [12].
Research on animals such as rhesus monkeys [13], marmosets [14], chicks [15], and guinea
pigs [16] has shown that myopic defocus, induced by multifocal or dual-power lenses, can
slow down or even reverse eye growth associated with myopia. This principle forms the
basis of various myopia control strategies, including orthokeratology (OK), spectacle lenses,
and multifocal soft contact lenses.

A recent meta-analysis reviewed the effectiveness of current treatments, both pharma-
cological and optical alternatives, revealing their efficacy in slowing myopia progression
by reducing refractive changes and axial length (AL) elongation [17]. Optical interventions
for myopia management such as spectacle lenses, soft contact lenses, and OK work by
modifying retinal defocus, specifically inducing myopic defocus to slow the progression of
myopia. The meta-analysis concluded that these optical interventions are effective in man-
aging childhood myopia, with the most significant effects observed in the first 12 months
of use, followed by a decrease in effectiveness over time [18].

Recently developed ophthalmic spectacle lenses designed to control myopia progres-
sion can be grouped into three categories: simultaneous defocus, contrast management,
and peripheral addition designs [18,19]. The first group includes lenses like defocus incor-
porated multiple segment (DIMS) [20], highly aspherical lenslets target (HALT) [21,22], and
cylindrical annular refractive element (CARE) [23] lenses. The second group is composed
of the diffusion optics technology (DOT) lenses [24]. The third group includes lenses that
produce progressive peripheral defocus [25–29].

In a previously published study [29], the effectiveness of a new ophthalmic lens design
featuring asymmetric myopic peripheral defocus (MPDL, MyoLess®, IOT, Madrid, Spain)
was evaluated over 12 months in a cohort of Spanish children. The results showed a
significant reduction in AL elongation for the group treated with MPDL compared to the
control group with single-vision lenses (SVLs). After one year, the MPDL group exhibited
an AL elongation of 0.14 ± 0.14 mm, compared to 0.23 ± 0.15 mm in the control group,
representing a 39% reduction in absolute AL growth (p = 0.014).

The current research builds on previous work, aiming to expand it to a two-year period
to examine the sustained efficacy of MPDL lenses in slowing the progression of myopia.
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2. Materials and Methods
This is a double-masked, prospective, randomized clinical trial conducted at Novo-

vision (Madrid, Spain). The study was initially planned to follow children for one year
to evaluate the efficacy of MDPL lenses for myopia control. This is an extension of the
follow-up to 24 months, following the same methodology already published [29].

The inclusion criteria were children aged five to twelve years with a cycloplegic
spherical equivalent refraction (SE) less than or equal to 0.50 diopters, astigmatism less than
or equal to 1.50 diopters, anisometropia less than or equal to 1.50 diopters, and corrected
visual acuity (VA) greater than or equal to 20/20.

Children were randomly assigned at the beginning of the study to the intervention
group fitted with MPDL lenses and the control group using SVL. The MPDL lenses have a
7 mm central zone free of defocus and an asymmetric myopic defocus zone of +1.50 D at
25 mm nasally, +1.80 D at 25 mm temporally, and +2.00 D in the lower region. The lenses
were made using freeform technology and were customized for each child based on their
prescription, pupillary distances, and pupillary heights. The defocus pattern was identical
for all children.

The Ethics Committee of Hospital Clínico San Carlos in Madrid, Spain, granted ap-
proval for the randomized controlled trial, ensuring compliance with the ethical guidelines
outlined in the Declaration of Helsinki. Additionally, the trial was officially documented
on ClinicalTrials.gov under the registration ID NCT05250206.

2.1. Visual Examination

At the 24-month visit, SE, AL, and VA evaluations were performed following identical
criteria to previous follow-up visits. For SE, the Canon Full Auto Ref-keratometer RK-
F1 (Canon, Tokyo, Japan) was used after administering three drops of cyclopentolate to
induce cycloplegia. For AL, the IOL Master® optical biometer (Carl Zeiss Meditec, Jena,
Germany) was used. The best corrected VA was measured monocularly at distance vision.
Additionally, data from the baseline visit were considered for determining factors associated
with AL growth: demographics (age and gender), family history of myopia (number of
parents with myopia), and children’s lifestyle (time on digital devices and time outdoors).
Table 1 shows the data collected at each visit.

Table 1. Assessment and examination schedule.

Visit Baseline Dispensing 6 Months 12 Months 24 Months

Signed parental consent form X

Basic
information

Demographic data X

Medical records X

Refraction
Subjective refraction X X X X

Cycloplegic autorefraction X X X X

VA
Uncorrected VA X X X

Best-corrected VA X X X X

Eye
evaluation

Keratometry X

Biomicroscopy X

Ocular fundus X

IOP X

AL X X X X
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Table 1. Cont.

Visit Baseline Dispensing 6 Months 12 Months 24 Months

Binocular
vision

Accommodation lag
evaluation X X X

Accommodation amplitude X X

Distance and near phorias X X X

Spectacle
fitting

Evaluation of frame
alignment and
lens condition

X

Questionnaires
Lifestyle X

Wearability X X
VA: visual acuity; IOP: Intraocular pressure; AL: axial length.

2.2. Statistical Analysis

The relative (%) and absolute (mm) AL values were statistically compared between
children wearing MPDL and SVL lenses. Relative AL growth refers to the percentage
change in AL relative to the baseline measurement for each individual. It was calculated
using the following formula:

(AL at 24 months − baseline AL)/baseline AL

Statistical analysis was conducted using Python (version 3.13.1). Continuous variables
were analyzed according to their distribution: means were analyzed through Student’s
t-test, while median values were analyzed employing the Mann–Whitney U statistical
method. Categorical data, including factors like gender distribution and parental myopia,
were assessed using the Chi-square test. To identify factors associated with relative AL
growth, such as age and other sociodemographic and lifestyle factors, univariate and
multivariate linear regression analyses were performed. The significance level was set at a
p-value of less than 0.05.

3. Results
The baseline and one-year results of this study have already been published by

Sánchez-Tena et al. [29]. Initially, 92 children were recruited and randomly assigned
to two groups: the SVL and MPDL groups were the control and treatment, respectively.
During the first year, nine participants dropped out (five from the MPDL cohort and four
from the SVL cohort), leading to an attrition rate of approximately 10%. The analysis
included 83 children (42 with SVL and 41 with MPDL). In the second year, an additional
14 children left the study (6 from the MPDL cohort and 8 from the SVL cohort). Factors
contributing to withdrawal included starting a new treatment after the 12-month study
(six children from each group), relocating (one child from the control group), and miss-
ing follow-up visits (one child from the control group) (Table 2). Ultimately, 69 children
completed the two-year follow-up (35 with MPDL and 34 with SVL), with a mean age of
10.0 ± 1.8 years (ranging from 6 to 12 years). Power analysis determined that a sample size
of 34 participants per group would provide 80% power, based on a one-sided test with a
5% Type I error threshold. This calculation assumes a mean difference between groups of
0.14 mm with a standard deviation (SD) of 0.23 mm. The flowchart of the RCT is shown in
Figure 1, and the baseline demographic and clinical characteristics of the participants are
presented in Table 3.
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Table 2. Summary of dropout reasons and potential impacts on statistical power.

Reason for Dropout SVL
Group (n) MPDL Group (n) Total (n) Potential Impact on Statistical Power

Started a new
treatment after
12 months

6 6 12 May introduce bias if participants had
faster progression rates.

Relocated 1 0 1 Minimal impact due to low frequency.

Missed follow-up
visits 1 0 1 Minimal impact due to low frequency.

Total 8 6 14 Attrition rate remains below
threshold to affect power significantly.
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Table 3. Baseline characteristics of the sample.

MPDL SVL p-Value

Mean age (years) 10.4 ± 1.8 9.6 ± 1.8

0.046 *Median age (years) 11.0 [2.5] 10.0 [2.0]

Age range (years) 6–12 6–12

Gender distribution
Female 23 17

0.274 ‡
Male 12 17

Mean axial length (mm) 24.12 ± 0.94 23.94 ± 0.84
0.400 †

Median axial length (mm) 24.05 [1.44] 23.83 [1.23]

Mean cycloplegic refraction (D) −2.57 ± 1.21 −2.00 ± 1.04
0.039 †

Median cycloplegic refraction (D) −2.50 [1.63] −1.81 [1.72]

Family history of myopia
One myopic parent 15 13

0.187 ‡Both myopic parents 10 16
Neither parent 9 5

* U—Mann–Whitney; † t—Student; ‡ Chi—cuadrado.

After two years of follow-up, no significant differences were observed between the
two eyes; therefore, only data from the right eye were used for statistical analysis (Table 4
and Figure 2). Over the 24-month period, the SVL group exhibited an AL increase of
0.37 ± 0.24 mm (95% CI: 0.29 to 0.45 mm), whereas the MPDL group showed a smaller
increase of 0.27 ± 0.23 mm (95% CI: 0.19 to 0.35 mm; p = 0.0341). The absolute difference
in AL elongation between the groups was 0.10 mm (95% CI: −0.01 to 0.21 mm). This
corresponded to a median relative growth of 1.32% [0.93–2.12] in the SVL group versus
0.93% [0.42–1.72] in the MPDL group (p = 0.0322). The mean relative AL increase was
1.10 ± 0.95% (95% CI: 0.77 to 1.43%) in the MPDL group, while it was 1.56 ± 1.02% (95% CI:
1.20 to 1.92%) in the SVL group. The use of MPDL lenses resulted in a significant reduction
in absolute AL growth by 28.7% and in relative mean AL growth by 29.8% compared to the
SVL group.

Table 4. Axial length change at 2 years: Comparison between SVL and MPDL.

SVL MPDL p-Value

Change in Axial Length between Initial and 24 Months

Absolute change (mean ± SD) (mm) 0.37 ± 0.24 0.27 ± 0.23 0.0341

Relative change (mean ± SD) (%) 1.56 ± 1.02 1.10 ± 0.95 0.0322

Relative change (median [Q1, Q3]) (%) 1.32 [0.93–2.12] 0.93 [0.42–1.72] 0.0322

The change in mean cycloplegic refraction at the 2-year follow-up was 0.43 ± 0.49 D
in the control group (95% CI: 0.26 to 0.60 D) and 0.20 ± 0.43 D in the MPDL group (95% CI:
0.05 to 0.35 D).

Regarding the factors linked to relative AL growth, univariate linear regression analy-
ses revealed that associations with variables such as gender, parental myopia, outdoor time,
hours spent using digital devices, and the initial spherical equivalent had no significant
impact on the relative AL growth between the baseline and 24 months. However, the age
of the child at enrollment affected the proportional increase in axial length during both
periods (regression coefficient for baseline to 24 months: −0.275, 95% CI: −2.232 to 1.681).
The negative regression coefficient (−0.275) indicates that for each additional year of age at
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the start of the study, the relative AL growth was lower. This suggests that AL increases
more in younger children, which could imply that myopia progression is faster in this
group. As such, the efficacy of the MPDL lens in controlling AL growth may be greater
in younger children, who experience a faster progression rate. The regression coefficient
was −0.275, with a 95% CI of −0.393 to −0.158 for the period between the baseline and
24 months (Figure 3).
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4. Discussion
In this study, it was found that after two years, MPDL spectacle lenses reduced the

absolute AL growth by 28.7% and the relative AL growth by 29.8% compared to SVL,
suggesting that MPDL lenses maintain efficacy over time and provide sustained interven-
tion to slow myopia progression. The current study provides results after 24 months of
treatment from the first RCT carried out in a Caucasian population, evaluating MPDL
lenses. Note that when comparing our results with other studies on the efficacy of myopia
control lenses over two years, we observed several differences that may be attributed to
population characteristics. Currently, to our knowledge, there are few published studies
assessing the two-year efficacy of myopia control spectacle lenses in European populations.
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Lam et al. [20] carried out research on the efficacy of lenses incorporating defocus
incorporated multiple segments (DIMSs) within a population of Chinese participants.
These lenses are designed with a central 9 mm aperture, surrounded by a 33 mm treatment
zone embedded with multiple +3.5 D positive power lenslets. The results after two years
showed a change of 0.55 ± 0.02 mm in AL for the SV group, compared to 0.21 ± 0.02 mm
for the treatment group, resulting in a difference of 0.34 mm.

Similarly, Bao et al. [22] investigated the effectiveness of HALT lenses in a population
of Chinese participants. These lenses are designed with a central zone dedicated to full
prescription correction and a 10 mm diameter aperture at the core. This central area is
encircled by a treatment zone comprising 11 concentric rings, each containing aspherical
lenslets measuring 1.1 mm in diameter. These lenslets have positive powers ranging from
+3.50 D in the peripheral rings to +6.00 D in the central rings. After 2 years of follow-up,
they found an AL increase of 0.69 ± 0.04 mm in the SV group, compared to 0.34 ± 0.03 mm
in the treatment group, with a difference of 0.35 mm.

In contrast, studies conducted in non-Asian populations have shown somewhat differ-
ent results. The study by Rappon et al. [30] on DOT lenses in the United States observed that
after two years of follow-up, there was an AL increase of 0.53 ± 0.33 mm in the SV group,
compared to 0.33 ± 0.23 mm in the treatment group, with a difference of 0.20 mm. DOT
technology features a central zone with a diameter of 5 mm, surrounded by translucent
microscopic diffusers (0.14 mm in diameter) designed to scatter light. This helps reduce
contrast and, consequently, reduces the disparity in activity between the L and M cones.

A recent study by Lembo et al. [31] evaluated the effectiveness of DIMS and HALT
lenses in slowing myopia progression over a 2-year period in a European population. This
retrospective cohort study assessed axial length (AL) elongation in two groups: 73 chil-
dren wearing DIMS lenses (mean age: 11.2 ± 2.3 years) and 73 children wearing HALT
lenses (mean age: 11.4 ± 2.4 years). At the 2-year follow-up, the mean AL increase was
0.29 ± 0.63 mm for the DIMS group and 0.32 ± 0.72 mm for the HALT group. Similar
findings have been reported in other studies on European populations evaluating myopia
control interventions using contact lenses. For instance, the study by Ruiz-Pomeda et al. [32]
analyzed the efficacy of MiSight lenses in a Spanish cohort of 46 children (mean age:
11.0 ± 1.2 years) and observed a mean AL increase of 0.28 mm (95% CI: 0.20 to 0.37) over
2 years in the MiSight group. Additionally, the multicenter study by Chamberlain et al. [33]
reported that a group of 70 children (mean age: 10.1 ± 1.3 years) treated with MiSight
contact lenses exhibited a mean AL increase of 0.23 ± 0.03 mm over 2 years. These results
align with our findings in children wearing MPDL lenses (mean age: 10.4 ± 1.8 years),
where the mean AL elongation was 0.27 ± 0.23 mm over the same period.

Our study showed a variation after two years of follow-up of 0.27 ± 0.23 mm in AL
in the MPDL group and 0.37 ± 0.24 mm in the SVL group, which resulted in a difference
of 0.10 mm or an efficacy of 29% in reducing AL growth, which are somewhat lower than
the effects observed in the Asian studies. Lam et al. [34] reported a 62% reduction in
AL elongation with DIMS lenses over a two-year period, while Gao et al. [35] showed
that HALT lenses achieved a reduction of approximately 51%. These differences could
be attributed to the specific population characteristics in our study. In this sense, it is
well-established that the progression of myopia varies significantly between Asiatic and
non-Asiatic populations. Studies have consistently shown that individuals of East Asian
descent, particularly those from countries such as China, Japan, and South Korea, tend
to experience more rapid myopia progression compared to populations from Western
countries [36,37]. This difference in progression rates has been attributed to a combination
of genetic, environmental, and lifestyle factors. In East Asia, the high prevalence of myopia
is often linked to increased near-work activities, such as additional time spent on reading,
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studying, and using digital devices, as well as limited outdoor activity [38,39]. In contrast,
populations from non-Asian regions, such as Europe and North America, generally show
slower rates of myopia progression [40]. In Spain, for instance, the greater number of
sunlight hours and a lifestyle that often involves more outdoor activities may contribute to a
slower progression of myopia. Children in Spain are typically exposed to more natural light,
which has been suggested to have a protective effect against myopia progression [41,42].
These differences in progression rates highlight the need to consider ethnicity, lifestyle, and
environmental factors when assessing the efficacy of myopia control interventions.

On the other hand, our cohort represents a population with a relatively lower risk of
myopia progression compared to what is typically reported in the literature. In our study,
children in the control group experienced an increase of 0.37 mm in AL after two years of
follow-up. However, according to a model for non-Asian populations [43], an increase of
0.46 mm in AL would be expected over the same period in a population with an average
age, like that of our sample. This aligns with the characteristics of a lower-risk population,
where the progression of myopia tends to be slower.

Additionally, it is important to consider potential biases introduced by dropouts in the
study. Data from children who completed the one-year follow-up [29] showed an increase
in AL of 0.14 mm in the MPDL group and 0.23 mm in the control group. The control group
values were consistent with the virtual control group, which predicts an AL growth of
0.23 mm after one year of follow-up for children with an average age equivalent to that
of our sample. However, in the remaining sample that completed the two-year follow-up,
the AL growth of the control group was considerably smaller than expected in the virtual
control group. Specifically, our study showed an increase in AL of 0.14 mm in the MPDL
group and 0.20 mm in the control group after 1 year of follow-up and, according to the
model, an increase of 0.25 mm in AL for the control group for the same period would be
expected. Therefore, while the 0.1 mm reduction in AL elongation observed in our study
is modest compared to other interventions, it is consistent with the effects expected in a
low-risk population.

When comparing optical treatments with pharmacological ones, it is evident that both
have advantages and limitations in controlling myopia progression. MPDL demonstrated
a significant 29–30% reduction in myopia progression in our study. Pharmacological
therapies such as low-concentration atropine (0.05%) have shown greater efficacy in several
studies, achieving up to a 50% reduction in myopia progression over two years [44,45].
However, it is important to note that many of these studies, such as the LAMP2 trial, were
conducted in Asian populations, where the effects of atropine may differ compared to
non-Asian populations [44]. On the other hand, although atropine could be more effective,
this therapy presents drawbacks such as the need for daily instillation, side effects like
photophobia and near-focusing difficulties, and potential adherence barriers in children
and families. In contrast, MPDL lenses offer a non-invasive option with better acceptance
among parents and children, as they eliminate the need for topical medications. The
use of spectacle lenses for myopia management has been extensively studied in recent
years and is currently one of the preferred options for myopia control due to their ease of
fitting, even for younger children. Additionally, spectacles generally have fewer or no side
effects compared to other optical treatments like contact lenses or atropine. This balance
between convenience, side effects, and efficacy must be carefully considered when choosing
a treatment, as each approach can be tailored to the individual needs and preferences of
patients and their families. Future studies could further explore parents’ perceptions of
these treatments and how these preferences influence therapy selection.

Regarding lens design, most of the lenses discussed feature a central zone that fully
corrects the prescription, with the diameter varying by design, and a peripheral zone with
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a positive addition to create myopic blur on the peripheral retina. These spectacle lenses
are designed to induce simultaneous myopic retinal defocus for both distance and near
vision. The central optical zone typically ranges from 7 to 10 mm in diameter, surrounded
by an addition of 1.50 D to 3.80 D. A smaller central zone diameter can cause visual
discomfort and issues when wearing the lenses. Another crucial aspect of lens design
is the myopic defocus, as its magnitude and distribution can significantly impact lens
performance. Previous research has indicated that varying peripheral retinal defocus is
vital in controlling myopia progression [46,47]. Additionally, studies have shown that high-
add power multifocal contact lenses significantly reduce the rate of myopia progression
compared to medium-add power lenses [48]. MPDL is a freeform lens with an optical
zone of 7 mm and an asymmetrical progressive peripheral positive defocus of +1.50 D
at 25 mm nasally, +1.80 D at 25 mm temporally, and +2.00 D in the lower region. The
lenses were designed with the goal of finding an optimal configuration that minimizes
the optical area while maximizing the region with plus power and reaching a high level
of defocus power that is wearable for the user in order to ensure compliance with the
treatment. The positive power added to the lower part of the lens serves to expand the
plus defocus area for distance vision while maintaining appropriate comfort for near vision.
The asymmetrical positive defocus between the nasal and temporal areas of the lens was
incorporated to better align with the morphological characteristics of the myopic retina.
It is well-established that the retina exhibits asymmetry, particularly between the nasal
and temporal retinal hemifields, with differences observed in anatomical neural features,
peripheral refraction, and AL growth [49–51]. It has been proposed that retinal sensitivity
may differ between the nasal and temporal hemifields, with the nasal region potentially
playing a more crucial role in the mechanisms driving eye growth in response to hyperopic
defocus [51]. To determine the final power distribution of the lens, various prototypes were
developed and tested in a series of trials with young adults. The lens selected for this study
was the one that provided the best balance between comfort and design characteristics.

Finally, several factors of the present study have been identified as limitations and
deserve discussion. Firstly, baseline data show a significant difference in the mean age
between the two groups, with children in the MPDL group being slightly older than those
in the SVL group. Although this age difference persisted throughout the 24-month period,
our analyses controlled for this variable to ensure that the observed differences in myopia
progression were not solely influenced by age. Secondly, while the study duration of
two years is considerable, it is shorter compared to other studies, such as the CYPRESS
trial evaluating DOT lenses over four years [52], or DIMS studies reporting data spanning
up to six years in Chinese pediatric populations [53]. A longer evaluation period could
provide a more comprehensive perspective on the long-term efficacy and safety of MPDL
lenses in controlling myopia. Another limitation is the dropout rate of 16.7%, which could
affect the robustness of the results. Initially, this study was planned for one year, but the
extension to two years led to some participants discontinuing treatment after the first
year. Furthermore, this study was conducted at a single center in Madrid, which may
limit the generalizability of the findings to other regions with different demographic and
environmental characteristics. However, the inclusion of a diverse sample in terms of age
and gender improves the generalizability of the findings despite these limitations.

5. Conclusions
This research is the first two-year, randomized, double-blind clinical trial in Europe

to evaluate the use of ophthalmic lenses with an asymmetric myopic peripheral defocus
design. The results confirm the effectiveness of MPDL spectacle lenses in controlling
myopia in a cohort of Spanish children, demonstrating a 28.7% reduction in the absolute
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growth in AL and a 29.8% reduction in relative AL growth compared to the control group
wearing SVL. These results are clinically relevant, as they provide optometrists with a
non-invasive, spectacle-based option for managing myopia progression in children. Given
their efficacy and ease of use, MPDL lenses could serve as an alternative or complement
to pharmacological interventions, particularly for children or families preferring non-
pharmacological approaches.

Future research should focus on validating these findings through multi-center trials
that encompass diverse populations and environmental conditions. Longer follow-up peri-
ods would also help to assess the sustained efficacy and safety of MPDL lenses, as well as
their long-term impact on the risk of developing high myopia and associated complications.
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